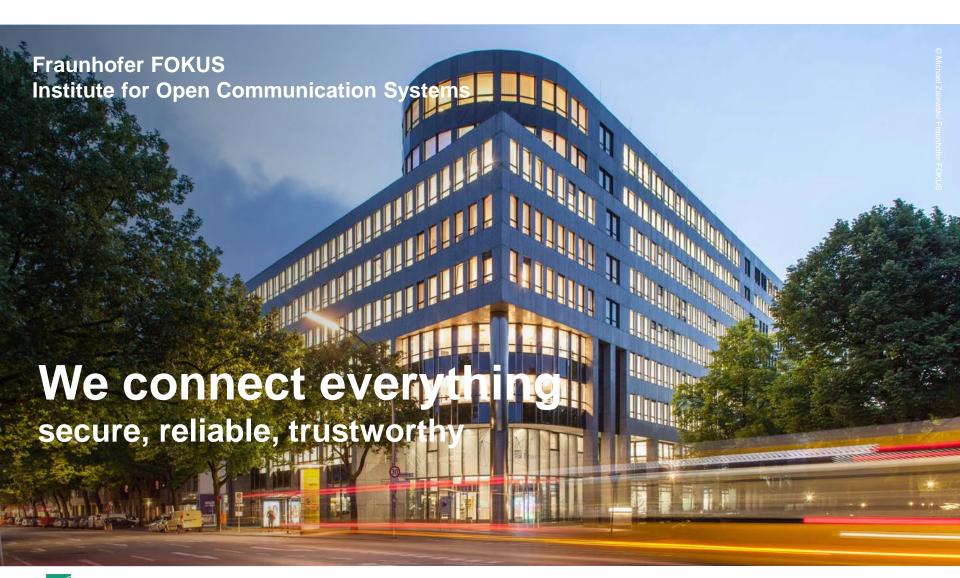


Prof. Dr.-Ing. Ina Schieferdecker Axel Rennoch



Outline

- Our Context
- Introduction
- Fundamentals (test objectives, test levels, etc.)
- Eclipse IoT Testware

We connect

Things

Processes

Persons

Organizations

- thematically
- technologically
- scientifically
- organizationally
- specialized
- secure
- effective

Cooperation

Knowledge transfer

R&D contracts

Licenses

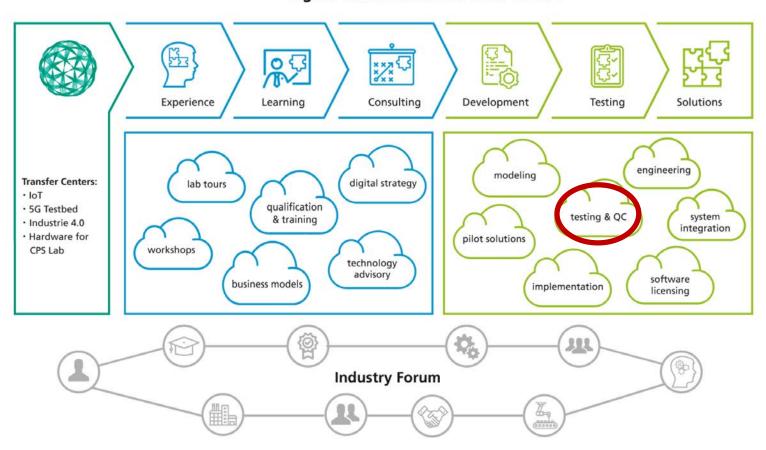
Universities

- -Seminars
- -Tutorials
- -Undergraduate, graduate, and postgraduate theses

Industry

- -strategic partnerships
- -bilateral cooperations
- –national and international R&D projects

Politics and administration


- Federal ministries, state governments, municipal agencies
- -Municipal contractors

Spin-off firms

BERLIN CENTER FOR DIGITAL TRANSFORMATION

Digital Transformation from A to Z

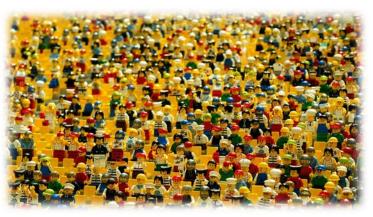
ISTQB OVERVIEW

International Software Testing Qualifications Board (www.istqb.org):

- Non-profit
- Founded in 2002
- Headquartered in Belgium
- Composed of volunteer international Testing Experts from almost 50 National Boards
- Responsible for the "ISTQB® Certified Tester" scheme worldwide
- Provides software testing glossary
- Already over 600.000 exams and 450.000 certificates worldwide

Advancing the software testing profession

Prof. Dr. Ina Schieferdecker Axel Rennoch



What are the most important challenges?

Harsh, unreliable environments, **distribution**

Highly **dynamic**, large numbers of different sensors, **openness**, **variability**

Limited resources, scaling

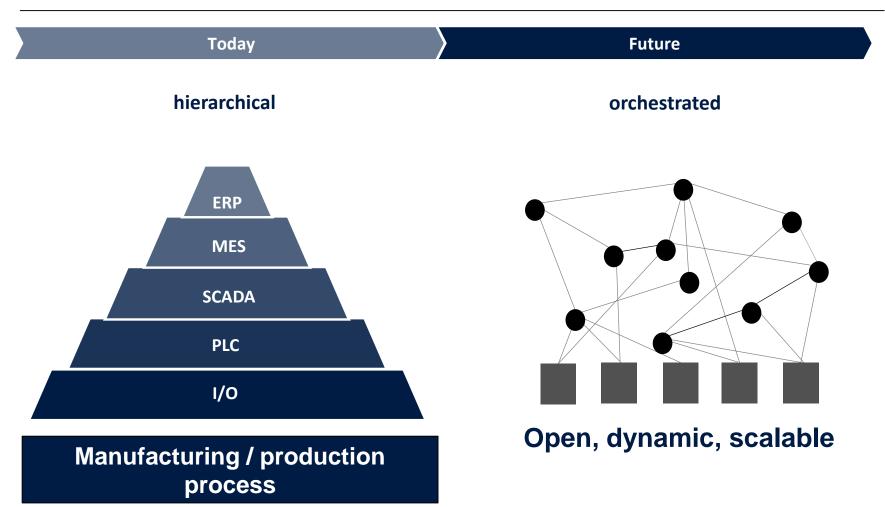
IoT solutions demand new approaches in analytical quality assurance

What are the most important challenges? Examples

- Long periods of operation
- Extension of development-related QA into run-time
- DevOps links together testing, run-time monitoring and certification
- Test level "operations" <u>after</u> the usual system tests and acceptance …
- ... considers later changes
 - Extension to interfaces,
 changes to system parts,
 diagnosis of new weak points...
- Liability for damages caused following misuse or security incidents.

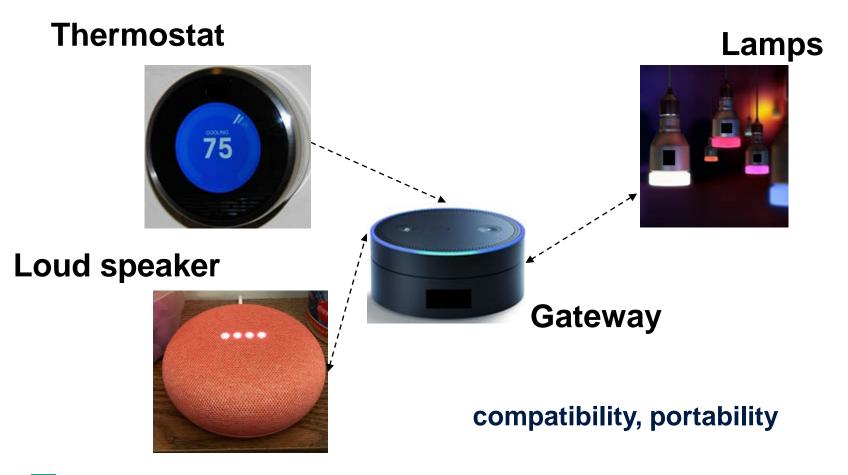
Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Quality attributes – Specific priorities for IoT systems

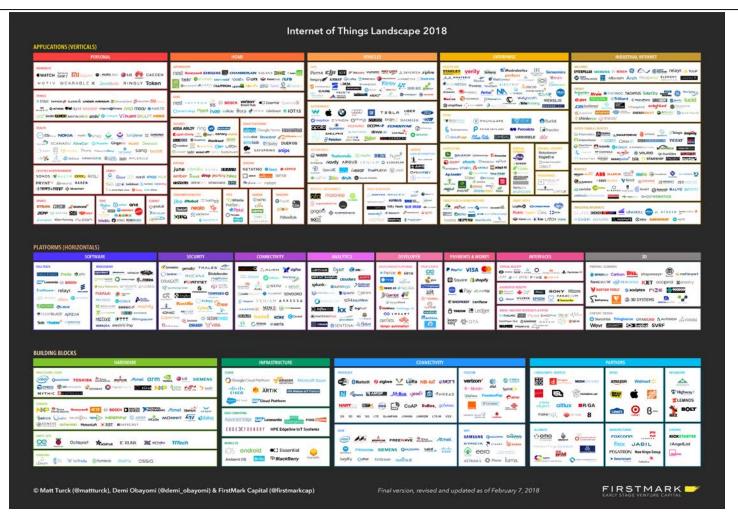


Reason	Prioritized quality attributes for IoT	
	Interoperability	
	Performance and capability	
Specific (distributed) architecture	Adaptability	
architecture	Robustness and resilience	
	Compatibility	
Interrelated lifecycles and	Maintenance	
interdisciplinary nature of IoT	Portability	
	Functional security (safety)	
Interrelated and wide ranging business processes which can	IT-Security	
	Privacy	
be represented in IoT systems	Usability	
	Ethical aspects	

Change to a new architectural paradigm



Distribution, inter-related lifecycles and interdisciplinary aspects



High level of variance in testing IoT solutions Example: high diversity of platforms

Source: http://mattturck.com/wp-content/uploads/2018/02/2018_Matt_Turck_loT_Landscape_Final.png; 25.01.2019; 16:01 Uhr

Prioritization of test objectives

The priority of test objectives...

- relates to the priority of the quality attributes to be tested
- ... must be **continuously** evaluated over the lifecycle of the IoT system
- ... and where necessary adjusted or extended

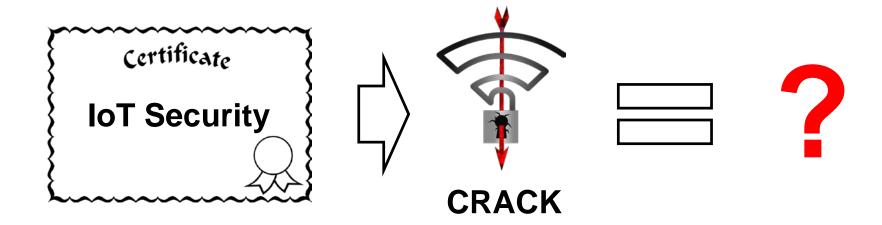
Useful subdivisions of IoT test requirements and test objectives are

- Process
- System/component
- Communication protocols

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Long operational life

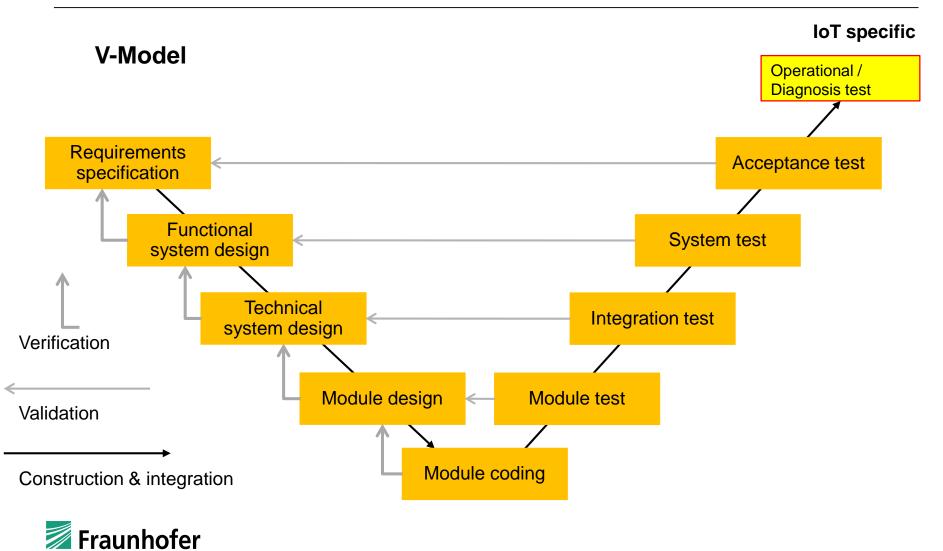
- After the usual system and acceptance tests could follow a very long operational life. → new test level "operation"
- Parts of the IoT solutions may be included → Updates + Tests during "operation"



How do we deal with certificates after a security gap has been revealed?

Earlier certificates issued at product release lose their meaning

→ New liability questions after security incidents



General test levels

FOKUS

22

For IoT specific test levels

Test level	Example	Remarks
Acceptance test / system test or certification according to general test and integration requirements	Information security Conformity with supporting protocols Conformity with standardized procedures	Dependencies between usage profiles must be considered (e.g., private vs. industrial application, military application). Conformity in this sense relates to standards and standards-like documents.
Integration test		Can strongly depend on the specific usage scenarios of the test objects.
for the embedding of the test object into its (test) environment	Compatibility Interoperability	System environment can include high levels of complexity or possibly not fully foreseen behavior (e.g., future new services)
		Environment can also be created by simulation.

For IoT specific test levels

Test level	Example	Remarks
Operational/ Diagnosis test in the production environment and possibly also during the productive phase (e.g., passive tests for monitoring of behavior in operation)	Presence of required services (e.g., production tests by the manufacturer), Test scenarios for sustaining operations	Since the system environment cannot completely recreate the anticipated behavior and may change, tests and analysis must also be required in operation. Triggers are, for example, new deficiencies or updates that cannot be executed in a lab setting. No "continuous" tests without user permission. It is possible that associated additional security risks (IT-Security and safety) must be considered.

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Inclusion of a risk analysis

Risk analysis in the test development process:

e.g., **ETSI EG 203 251**

Risk-based Security Assessment and Testing Methodologies

How is a risk assessed and calculated?

Risk

Probability * Impact

Example definition:

The possibility of an attackers (threat) for uncovering a vulnerability in one or more assets and the resulting damage to the organization.

How are risks processed?

Process according to ISO 31000 / 2009

- Establishing the context
- 2. Risk assessment
 - a. Identify risks
 - b. Analyze risks
 - c. Evaluate risks
- 3. Risk treatment
 - → Iterative, back to 1.

Accompanying activities

- Monitoring and review
- Communication and consulting

Which vulnerability lists are openly known?

Example IT-Security (1)

Microsoft The STRIDE Threat Model

- Spoofing identity
- Tampering with data
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privileges

Which vulnerability lists are openly known?

Example IT-Security (2)

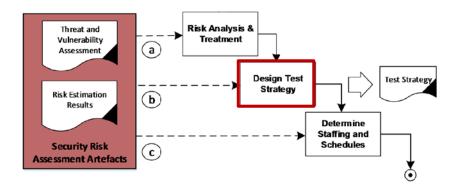
OWASP IoT Testing Guides (TOP 10)

- Insecure web interfaces
- Insufficient authentication / authorization
- Insecure network services
- Lack of transport encryption
- Privacy concerns
- Insecure Cloud interface
- Insecure mobile interface
- Insufficient security configurability
- Insecure software / firmware
- Poor physical security

Involvement of risk analysis using ETSI EG 203 251

(a) Assessment of a risk analysis

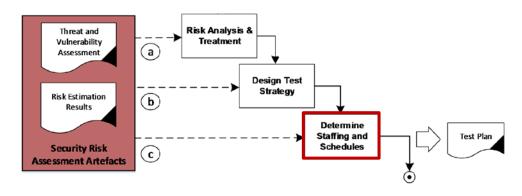
- 1) Relevant security risks with particular focus for security tests
- Other product risks or project risks relating to missing resources, technical problems connected to test infrastructure.
- 3) Develop an overall consideration of risks for the test project



Involvement of risk analysis using ETSI EG 203 251

(b) Design risk-based test strategy

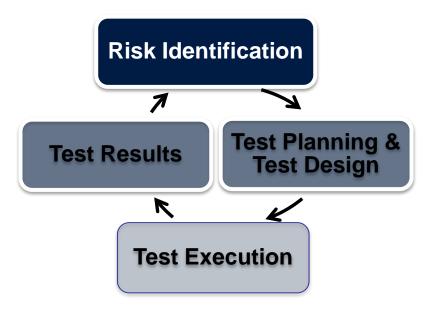
- 1) Assign vulnerabilities and attack scenarios
- Identify potential vulnerabilities which have the biggest impact on the general security risks
- Allocate test techniques which are suitable for uncovering the identified vulnerabilities
- 4) Assign test completion criteria
- 5) Priorize test objects and/or test conditions



Involvement of risk analysis using ETSI EG 203 251

(c) Risk-based resource planning and test scheduling

- 1) Check/obtain competency in security
- 2) Allocate resources taking account of required test effort
- 3) Create the test plans such that the <u>first</u> test objects tested are those where the <u>largest impact</u> on the handling or <u>minimization of identified security risks</u>.



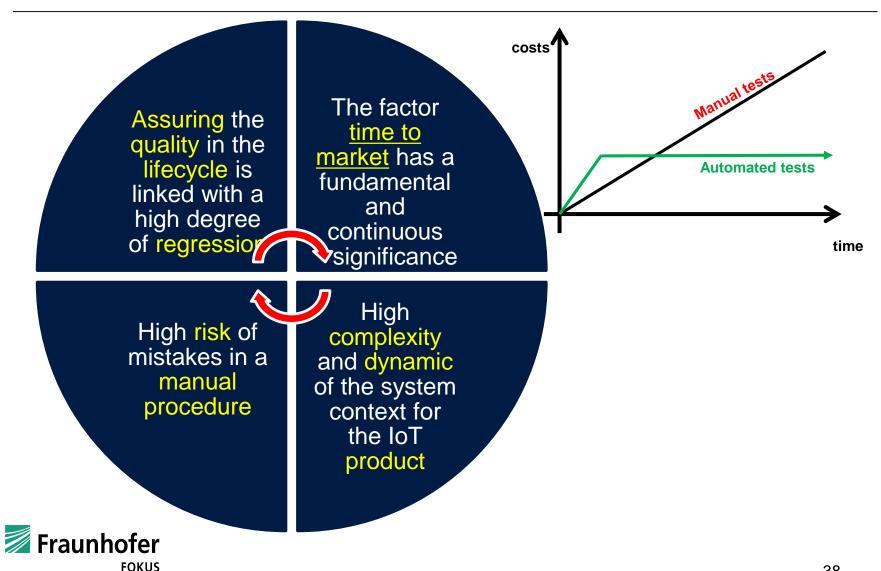
Risk-based testing (Example: Security)

Inclusion of test experiments

- Provide justification for the absence of potential vulnerabilities.
- Provide justification for the functional correctness of treatment scenarios and countermeasures.
- Discover unknown risk factors (i.e. vulnerabilities)
- Provide feedback for reassessing risk values

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Specialties of IoT testing



Perspective	Specialty	Test variations in addition to "classic" software and protocol testing
Applications (analytics, visualization and control)	High level of significance for security and usability	GUI, Usability and (mobile) App Testing Performance und Scalability Testing Security Testing Crowd Testing
<u>loT</u> perspective (platforms and interfaces, computation-, aggregation- and storage services)	High level of significance for security, conformity /interoperability and data quality	Real-time testing GUI testing (for management software) Security testing
Physical perspective (devices and device	High level of significance for security, conformity /interoperability and availability	Performance and scalability testing Service testing (connectivity) Security testing Embedded Systems Testing
connectivity)	High level of significance for robustness, physical security, resource usage	Robustness-Testing (Physical) Security Testing Performance-Testing (Resources)

Need for test automation

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

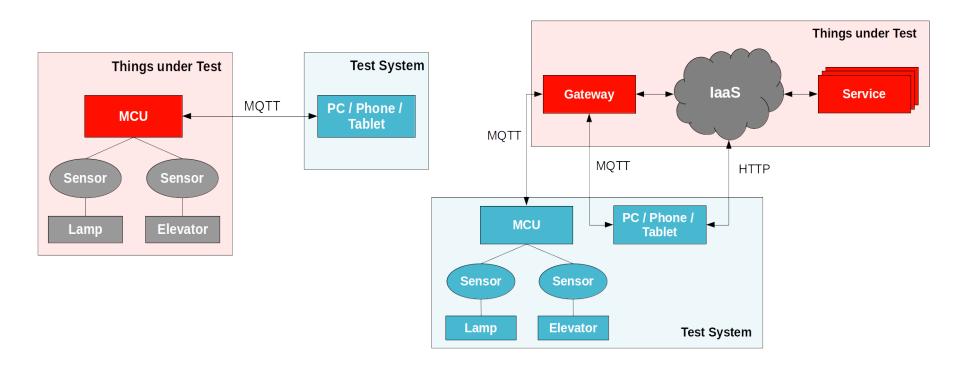
Which IoT test architectures are there?

- Device-based loT test architectures
- Service-based loT test architectures

Infrastructurebased IoT test architectures

☐ E.g., for testing Retroboxes or Gateways

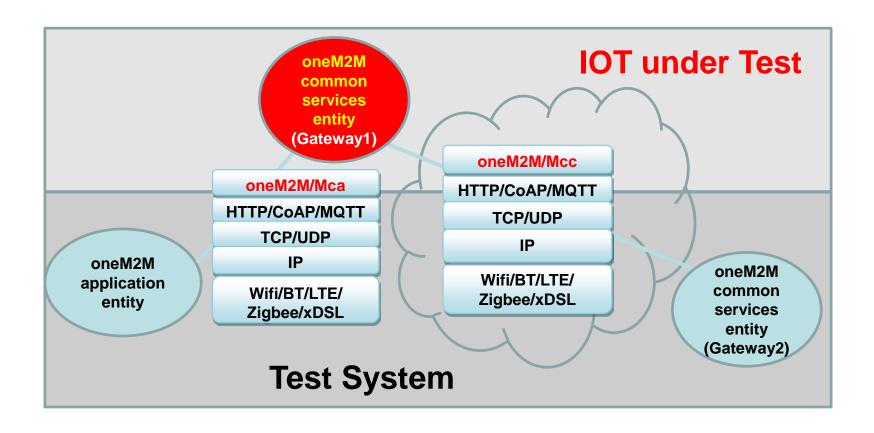
- □ E.g., for the dataoriented testing of **Dashboards** in the **Cloud**
- ☐ E.g., for testing


 oneM2M functional
 elements

Since IoT systems are distributed, many **distributed test architectures** and **corresponding process strategies** can be applied.

Example: Efficiency improvements by virtualization of the entire test system

Example: various test systems (1)



Example: various test systems (2)

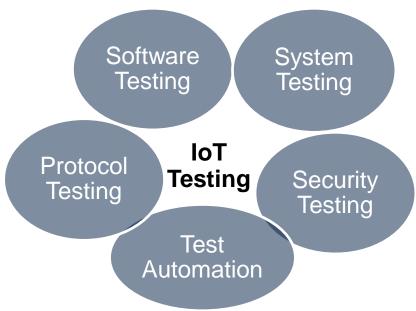
Fundamentals of IoT Testing

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Integration of existing testing techniques

Testing methods and testing tools are NOT fundamentally new

they are a **special selection** of established approaches


considering the *IoT-specific* characteristics of the

SUT

 considering the specifics from the requirements analysis

Main focus for practical applications

- Interoperability
- Security
- Performance

Where do we need testing techniques?! Some examples

Familiar test objectives

Protocol stacks

IETF-based: CoAP, MQTT, etc.

IEC-based: OPC-UA

ITU-based: M2M

Application frameworks

Eclipse: Kura, Scada, etc.

Additional test objectives

Security

ISO: common criteria

Mitre: CWE list

Others

Data

Semantic real-time data

Protocol Test

- Conformity
- Interoperability
- Performance

Software Test

- Component testing
- Integration testing
- System testing

Test of IT-Security

- Risk-oriented testing
- Fuzz testing
- Online testing
- Data quality

Important IoT testing techniques

Model-driven analysis strategies and model-based testing

optimal <u>analytical</u> <u>approaches</u>

Definition of the <u>SUT</u> <u>interfaces</u>

Important <u>Best Practice</u> for IoT Tests

Online MBT

Test automation

Meaningfully extended by manual tests

In particular exploratory tests

Standardized test descriptions for specific domains and their protocols

- e.g., ETSI in the telecommunication, automotive and Autosar domains
- typically using formal descriptions techniques.

Challenges of test automation: TTCN-3 – Testing and Test Control Notation

- Example of a formal description
- <u>International standardized</u> test notation, which is especially developed for the description of test scenarios
- **Test technology** which is suited to <u>all testing techniques</u>
 - Distributed
 - Platform-independent
 - Extendable
 - Adaptable to the environment

... and why MBT?

MBT-testers use models in their projects for performing test analysis and test design

Advantages for test activities, e.g. test implementation and the creation of test results reports

Continous support from MBT-tools is nevertheless limited.

Model-based testing is an innovative approach for improving the <u>effectiveness and efficiency</u> of the test *generation* process.

Fundamentals of IoT Testing

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Reminder: Security Tests are extremely significant!

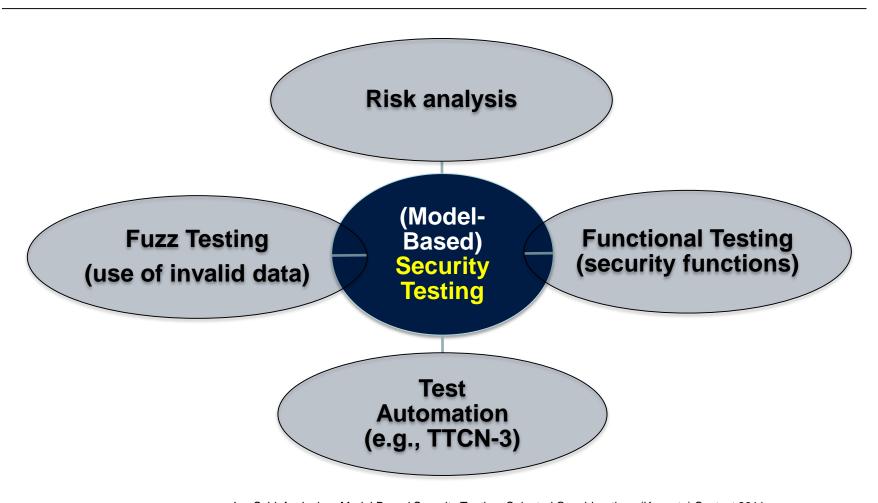
Why is IT-security often not considered in sufficient depth – especially for IoT projects?

Missing overall consideration of vulnerabilities and risks*

No economic incentive

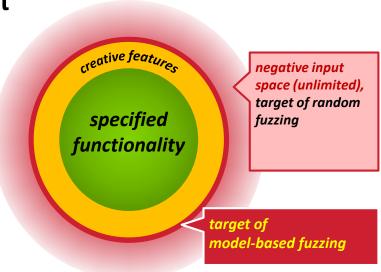
* IoT Systems are composed of a wide range of different components which are frequently developed by separate teams Insufficient expertise in interdisciplinary projects

Example: Botnets


network connections, local resources and data are available and are used

- Group of automated programs
 (malware) to impact system security
 which run on interconnected
 computers
- Without the consent of the owner

Combination of techniques for security testing


Ina Schieferdecker, Model Based Security Testing: Selected Considerations (Keynote) Sectest 2011, Workshop on the 4th IEEE International Conference on Software Testing, Verification and Validation Berlin, Germany

Example FUZZ Testing

- Fuzzing originally describes the random generation of test vectors
- Fuzzing is about injecting invalid or random inputs in order
 - to reveal <u>unexpected</u> behavior
 - to identify <u>errors</u> and expose <u>potential vulnerabilities</u>
- Ideally, fuzzers generate semi-valid input data, i.e. input data that is invalid only in small portions.
- Challenge:

Finding data that is as *invalid* as possible *and* is still *accepted*.

Test focus for security tests

Perspective	Attack Vector	Methods
Applications (analytics, visualization and control)	 Mobile applications Web applications Data and control flows 	 Test of web vulnerabilities Test of sensitive data in mobile devices Data flow analysis / Proxy / Man in the Middle-Attack Denial of Service Search for logical vulnerabilities in the overall concept
loT perspective (platforms and interfaces, computation, aggregation and storage services)	 Cloud services Web interfaces (configuration interfaces) of devices Data and control flows Access and rights management Update mechanisms (over the air updates) Localization service 	 Test of web vulnerabilities Data flow analysis / Proxy / Man in the Middle-Attack Search for protocol vulnerabilities or incorrect configurations e.g., unencrypted communications Denial of Service Search for logical vulnerabilities in the overall concept Spoofing of end devices

Test focus for security tests

Perspective	Attack Vector	Methods
Physical perspective (devices, device connectivity)	 Backend APIs Data and control flows Encryption Other communication between the IoT Layer and the Network Layer Device storage and storage extensions (e.g., SD-cards) Device firmware Physical device interfaces Device network interfaces Physical manipulation or theft of the device 	 Data flow analysis / Proxy / Man in the Middle-Attack Search for logical vulnerabilities in the overall concept Test of web vulnerabilities Making use of known protocol vulnerabilities Denial of Service Search for sensitive data (passwords, keys,) and manipulation of data Analysis of firmware Back channel attacks

Fundamentals of IoT Testing

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

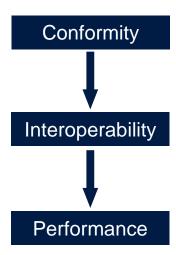
What role does interoperability play in IoT?

- IoT-Systems and their components can differ strongly different and they can originate from different manufacturers.
- Example:
 - Mass-produced sensors and actuators
 - Specially configured gateways as well as other devices with dedicated protocols / versions
 - Wide variety of end devices for display of analyzed data.

• Example Smart Home:

LED-Lamps, Amazon Echo, iPhone, switchable intermediate plugs, Telekom-Starter Package, window sensors, Smart Home heating package, ...

Are the various systems and components able to interact with each other?



What distinguishes interoperability tests?

Interoperability tests evaluate the ability of the software product to interact with one or more specified components or systems

- functional test
- data exchange between <u>two selected</u> systems (client / server)
- Normally the interoperability tests are executed <u>after</u> <u>successful</u> completion of conformity tests
- <u>correct</u> inputs according to the protocol
- Robustness tests using deliberately <u>defective</u> data which tests the stability (reaction) of the system

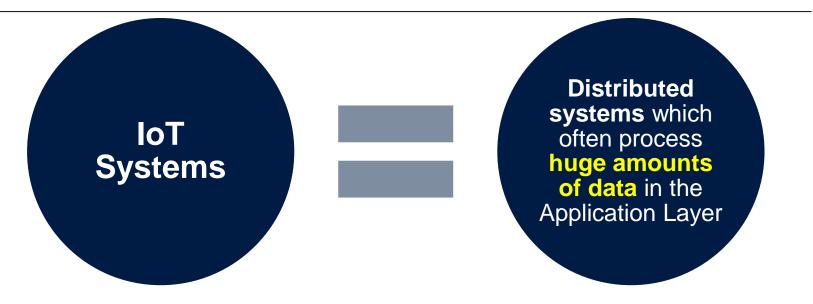
Overview interoperability test

Test object	Technique	What is tested?
Technical interoperability	Basic tests of connectivity and communications protocols	Coupling of hardware / software components in order to ensure basic communication
Syntactic interoperability	Targeted checks of messages and the syntax of abstract data formats. Use of encoders and decoders	Correct use of syntax for e.g., HTML, XML or ASN.1 data structures
Semantic interoperability	Execution of sample scenarios and user scenarios , possibly with support from standardized Use Case catalogs	Checks on whether the implementation of the interconnected components/systems follows a common interpretation.

Plugtests[™] A special session on interoperability tests

Event Format	Catalog of test objectives
Conventions: Manufacturers of electronic equipment or software	Tabular form
Interoperability test of a product with products from <u>other</u> manufacturers	specification of configuration, sequential flow of triggers
Test on the basis of a (standardized) catalog of test objectives	specification of participating components or systems

Fundamentals of IoT Testing



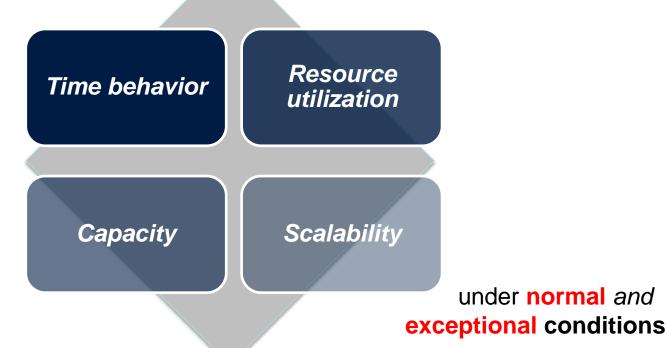
Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

The need for performance tests

Essential aspects for quality assurance:

- A suitable architecture must be selected

 (e.g., with the use of elements from Edge Computing)
 to enable the efficient processing of heterogeneous data streams
- Scalable performance of each IoT component
- Monitoring and test of performance in operation



Reminder about performance tests

Several types of performance

to test

Reminder about performance tests

Automation (required):

- High data volumes (transaction volumes)
- Distribution of test interfaces

Parameterization (usual):

- Number of devices, Client/Serverrelations, possibly specific infrastructures
- Time intervals, environmental conditions
- Specific boundary conditions (decision criteria)

What needs to be considered for performance tests?

The **configuration** of the test system:

- Many interfaces
- Distribution and synchronization of the scenario control across all test components
- Manufacturer-independent Use Cases for test (standardization!)

Specialties for loT:

- Simulation and reaction from devices/sensors instead of users
- Irregular/ uncommon status changes (caused by environment)
- Unsteady connectivity
- Interaction of various communications protocols
- Consideration of specific hardware characteristics
- Delays in Cloud transfers (Test access points)

What factors distinguish the test tools?

Combination of protocol test and application **test tools**

Consideration of (realtime) company **data analysis** (data mining, statistics, etc.) High level of abstraction for the test description language (various transfer layer)

Re-use of conformity scenarios for load test scenarios

Simulation over long time periods and verification of large volumes of collected data

→ More effort for the configuration and simulation of the test environment!

Overview of tools for performance testing

Approach	Tool example	Explanations
Dynamic Analysis	Dynamic <u>analysis</u> tools <u>uncover defects</u> which can only be revealed <i>when the program is running</i> (e.g., time dependent defects and memory bottle-necks)	These are typically used for the component test and component integration tests, as well as for tests of middleware.
Performance test, Load test, Stress test	Performance test tools <u>monitor</u> and <u>protocol</u> how a system responds under <i>various</i> simulated usage conditions, e.g the number of parallel users, ramp-up behavior, frequency and relative proportions of transactions. The load is created by simulating virtual users which execute a selected group of transactions. These are <u>distributed</u> over various test machines which are generally known as load generators.	Software test with expected and extreme loads submitted to a running system (e.g. for simulating event data). The behavior of the system is then observed and analyzed.
Monitoring	Test monitors continuously analyze, verify and record the usage of specific system resources and issue warnings of possible problems in providing services.	

Fundamentals of IoT Testing

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Fundamental challenges (1)

Product certification

=

Checking conformity to the requirements stated in <u>standards</u> and additional <u>normative</u> documents (DIN EN ISO/IEC 17065)

Basis for the certification: guiding principles, norms and standards

Main focus for IoT: Checking IT-Security

- Collection of **high-level norms** that are still **too immature**
- Currently there is <u>no</u> "loT Standard"

- Checking *products, processes and* services
- Functional security requirements, stability
- Conformity and vulnerability to errors in communication protocols typically used in IoT

Fundamental challenges (2)

The goal is to establish confidence in a part of the IoT

Fundamental que certification	estions in a	Practical questions
Which criteria shatest, evaluation ar approaches? Which part of an or an IoT solution included? How shall the che performed and whe certification auth	loT product shall be ecks be not must the	 What shall be the certificate's period of validity? What happens if a security incident occurs? What significance do updates and patches have for the certificate?
General validity / long of requirements: check/test(pass) of		

IoT specialties

Wide range of varieties of IoT-Devices and IoT-Services

Major significance of certification

Test lab

 Provides results from inspection and checking

Certification authority

- Evaluates results from inspection and checking
- Issues a certificate or a recognized seal of approval

Fundamentals of IoT Testing

Test- objectives	Test levels	Risk analysis
Test automation	Test- architectures	Test techniques
Security, Interop., Performance	Certification	Summary

Summary

Test Objectives

For <u>all layers</u> of the architecture

Inclusion of <u>risk</u> analysis

Priorization!

Test Levels

Test and Monitoring "in operation" due to longer operational lives and updates

Automation

Thorough test

Regression

Distributed architecture

High data volumes

IT-Security

Overall consideration

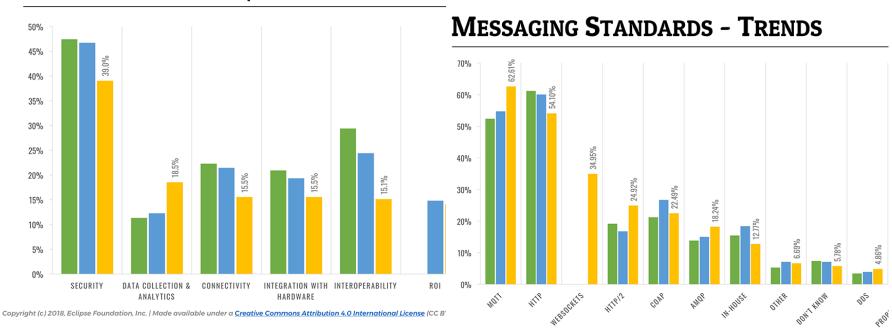
For <u>all layers</u> of the architecture

Many techniques

Certification

Missing standards

Scarcity of generally accepted check criteria


The Testware

TRENDS IN IOT

TOP IOT CONCERNS / TRENDS 2016-2018

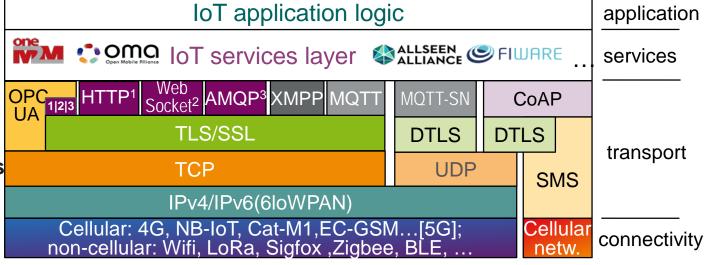
vright (c) 2018, Eclipse Foundation, Inc. | Made available under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

CHALLENGES IN IOT

Wide portfolio of competences required

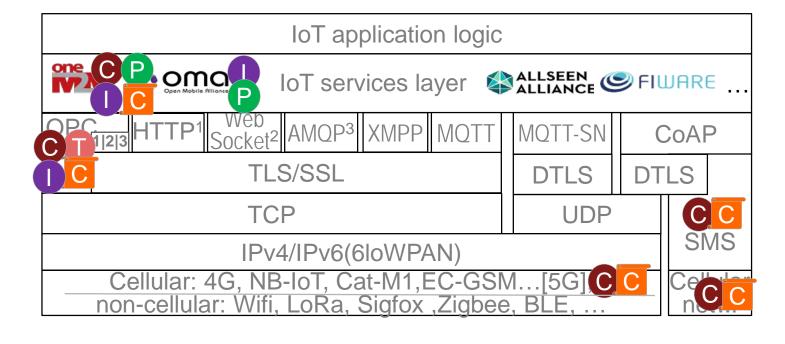
- Devices (sensors, HW, embedded SW)
- Platforms (Cloud, platform domain knowledge)
- Applications (SW, dashboard, business logic)

IoT platforms


360+ worldwide

IoT protocols

- Rich selection
- IP-based
- non-IP based


Connectivity options

- Throughput
- Latency
- Power efficiency
- Packet size

TEST COVERAGE BY SDO-S

- Conformance tests
- Interoperability tests
- PlugFest/Interoperability test event
- Compliance tool
- Certification

THE ECLIPSE PROJECT

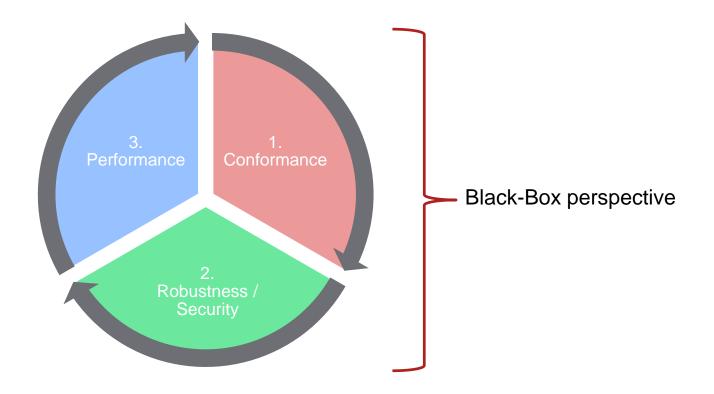
- Supplement to <u>running and active</u> Eclipse projects
 - Paho, OM2M, Titan...

- <u>New project</u> at Eclipse Foundation: https://projects.eclipse.org/projects/technology.iottestware
 - TTCN-3 test suites for **CoAP, MQTT, OPC-UA**, LoRa?
- Assured licenses for users

 Currently in cooperation with relayr GmbH, Ericsson, LAAS/CNRS, itemis AG, Spirent Communications, Easy Global Market, Iskratel/Sintesio, ...

IOT-TESTWARE

Take available software and tools ...


... and adding public testuites as a result of insights from IoT testing:

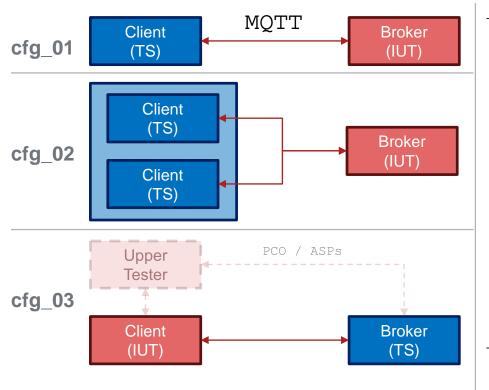
https://projects.eclipse.org/projects/technology.iottestware

IOT QUALITY

BACKGROUND

Test Description Language

- Design, documentation, representation of formalised test descriptions
- Scenario-based approach


Testing and Test Control Notation

- Specification and implementation of all kinds of black-box tests
- Component-based approach

SAMPLE TESTSUITE STRUCTURE: MQTT

Broker as SUT

- All mandatory message data fields
 - Regular and illegal data (Fixed/variable header, payload)

Protocol features

- Connect/disconnect (session)
- Subscribe/unsubscribe
- Immediate publish
- Last will and Testament (LWT)
- Heartbeats keepAlive values
- Topic
- Error handling

Client as SUT

- ...

TDL-TO

```
Test Purpose {
TP Id TP_HELLO_MSG_SERVER
 Test objective
 "Establishing..." /*Summary*/
 Reference
 "OPC-UA, Part-6-Mappings..."
Expected behaviour
ensure that
  {when {...}
  then {...}
```

- Informal text specification possible
- Support simple description structure (event occurrence sequences)
- Global keyword definitions (domain specific)
- Focus on a single test observation for pass/fail verdict criteria

• ...

TEST DEVELOPMENT SAMPLE: MQTT TEST CATALOGUE

√ Test configurations

✓ Test Suite Structure

√ Test purpose (catalogue)

√ Test implementation (TTCN-3)

TP Id	TP_MQTT_Broker_CONNECT_001					
Test Objective	The IUT MUST close the network connection if fixed header flags in CONNECT Control Packet are invalid					
Reference	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]					
PICS Selection	PIC_BROKER_BASIC					
Initial Conditions						

Expected Behaviour

```
ensure that {
  when {
    the IUT receives a CONNECT message containing
    header_flags indicating value '1111'B;
} then {
    the IUT closes the TCP_CONNECTION
}
```

Final Conditions

IOT TEST LANGUAGE

Did you know that YOUR PHONE...

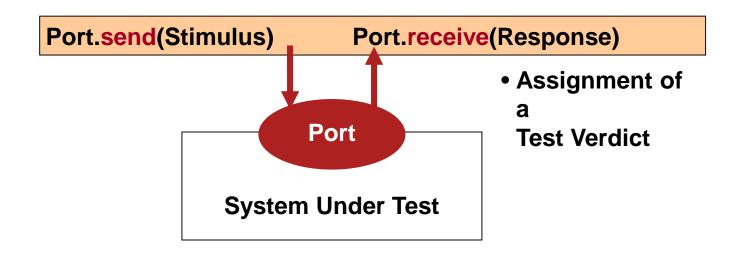
DESIGN PRINCIPLES OF TTCN-3

One test technology for different tests

- Distributed, platform-independent testing
- Integrated graphical test development, documentation and analysis
- Adaptable, open test environment

Areas of Testing

- Conformance and functional testing
- Interoperability and integration testing
- Real-time, performance, load and stress testing
- Security testing
- Regression testing


Used for system and product qualification and certification

TTCN-3 IS DESIGNED FOR DYNAMIC TESTING (BLACK-BOX)

Abstract and platform-independent:

TTCN-3 Test Case

MAJOR LANGUAGE ELEMENTS OF TTCN-3 NOTATION

Compiled to C/C++ or Java:

module definitions	
Imports	Importing definitions from other modules defined in TTCN-3 or other languages
Data Types	User defined data types (messages, PDUs, information elements,)
Test Data	Test data transmitted/expected during test execution (templates, values)
Test Configuration	Definition of the test components and communication ports
Test Behavior	Specification of the dynamic test behavior

IMPLEMENTATION USING TTCN-3

• Type definitions:

boolean, integer, float, bitstring, charstring, octectstring, hexstring, record, set, enumeration, union

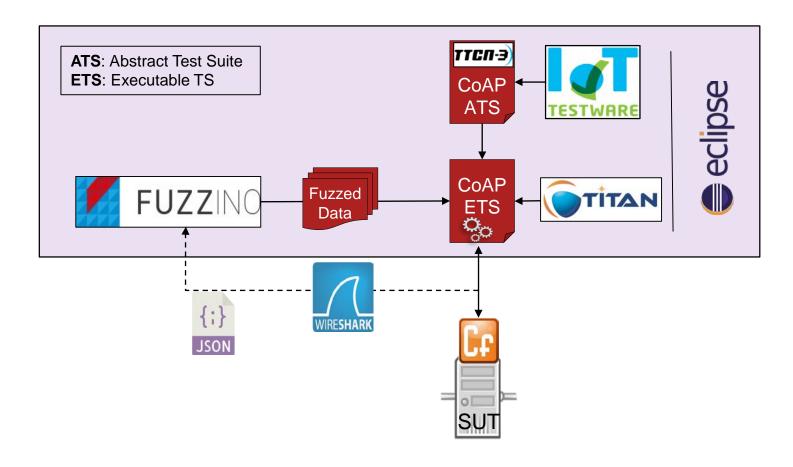
• **Programming constructs:**

message: send/receive procedure: call/getcall, reply/getreply, raise/catch if-then-else, loops: for, while, do-while, functions, alternatives component/port/timer control

Predefined functions:

type conversion, lengthof (string), sizeof (records), ...

• Overview: e.g. TTCN-3 Quick Reference Card


MQTT EVALUATION

Broker		PASS		FAIL		INCONC	
Name	Version	#	%	#	%	#	%
Mosquitto	1.5.5	90	85,71%	11	10,48%	4	3,81%
HiveMQ CE	2019.1	86	81,90%	15	14,29%	4	3,81%
lannister	v0.9.8	68	64,76%	33	31,43%	4	3,81%
Apache ActiveMQ	5.15.9	58	55,24%	43	40,95%	4	3,81%
Aedes	0.38.0	58	55,24%	43	40,95%	4	3,81%
RSMB	1.3.0.2	50	47,62%	51	48,57%	4	3,81%
Mosca	2.8.3	43	40,95%	58	55,24%	4	3,81%
Apache Apollo	1.7.1	34	32,38%	70	66,67%	1	0,95%

April 2019 – 105 Test Cases

FUZZING APPROACH

FUZZINO RESULTS AND RESOURCES

Results for CoAP:

- Initially, 4421 fuzzed test data for CoAP were generated
- After sending the data to a (local) CoAP server, it crashed after date "1107"

https://www.fokus.fraunhofer.de/de/sqc/security_testing https://github.com/fraunhoferfokus/Fuzzino/blob/master/doc/Fuzzino_XML_Description.pdf

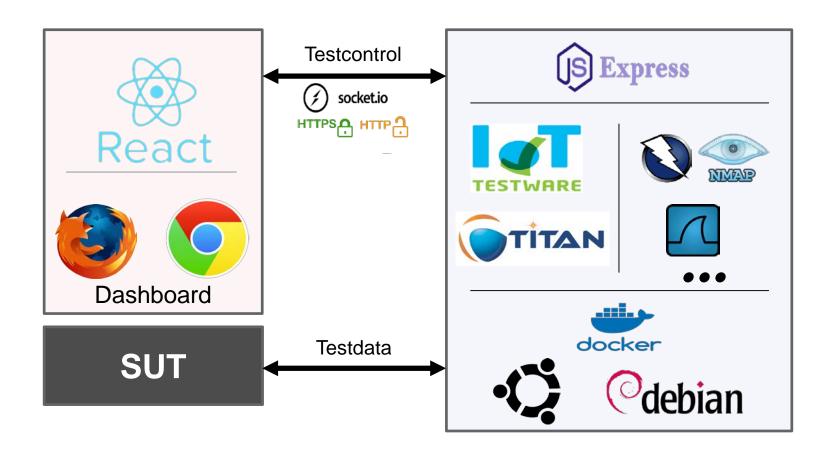
FUZZING DEMO

Detecting vulnerabilities using fuzzing

- Starting the SUT via SSH
- Starting the fuzzing campaign
- Detailed information gets collected in a CSV file
- Waiting...-> Crash of SUT occurs
- Crash infromation gets collected in a CSV file

Performance increases when executed in console

- Malicious data gets produced
- Waiting...-> Device gets rebooted after each crash
- Waiting... (for approximately 24h)... -> SUT crashed about 50 times
- Data on fuzzing and crash details gets merged
- A histogram reveals the error causing parts of the model
- The bug gets tracked down in a new test case
- The error causing PDU is found
- Packed in a narrow test case the error gets reviled



PERFORMANCE TESTING: HIGH-LEVEL VIEW

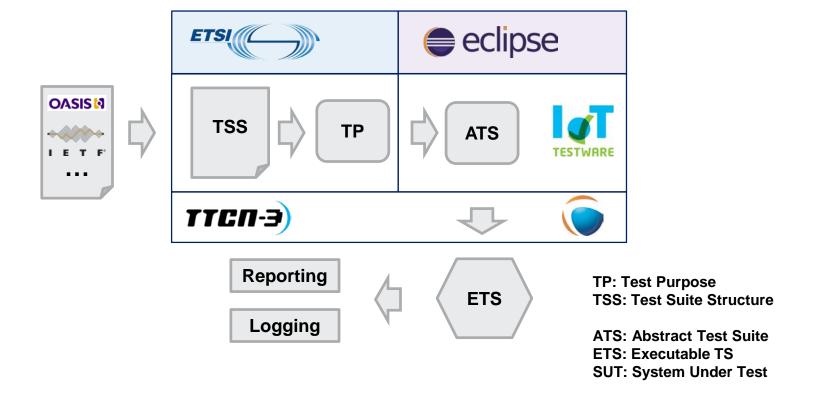
IOT-TESTWARE DASHBOARD

Standardization & Certification

ETSITC MTS

- New Working Group (TST) will develop loT test catalogues and specifications (not covered elsewhere)
- The types of testing include conformance, interoperability, security and performance testing

- The initial technical **focus** will be:
 - loT network layer
 (communication protocols, node connectivity, edge computing etc.),
 - Basic security of IoT devices


MTS TST WORK PROGRAMME

9 WIs, Work in progress, displaying 1 to 9				Displays 30 V	<u>, </u>		
Work item number		Version	Current status	Next status	Rapporteur name		
MTS TST							
DTS/MTS-TST8 (TS 103 646)	₫	0.0.4	Early draft (2019-05-21)	Stable draft	Wardaschka Andre	IEC 62443-4-2	
DTS/MTS-TSTCoAP-1 (TS 103 596-1)	₫	0.0.4	Early draft (2019-05-21)	Stable draft	Hackel Sascha		
DTS/MTS-TSTCoAP-2 (TS 103 596-2)			Start of work (2018-01-24)	Early draft	Hackel Sascha	СоАР	
DTS/MTS-TSTCoAP-3 (TS 103 596-3)			Start of work (2018-01-24)	Early draft	Hackel Sascha		
DTS/MTS-TSTLoRaWAN (TS 103 598)	₫	0.0.1	Early draft (2019-03-27)	Stable draft	AHMAD Abbas	LoRaWAN	
DTS/MTS-TSTMQTT-1 (TS 103 597-1)	₫	0.0.4	Early draft (2019-05-21)	Stable draft	Pintar Bostjan		
DTS/MTS-TSTMQTT-2 (TS 103 597-2)			Start of work (2018-05-30)	Early draft	Pintar Bostjan	MQTT	
DTS/MTS-TSTMQTT-3 (TS 103 597-3)			Start of work (2018-05-30)	Early draft	Pintar Bostjan		
DTR/MTS-TSTSecTM (TR 103 599)	₫	0.0.1	Early draft (2019-03-27)	Stable draft	AHMAD Abbas	Vul. database	

https://portal.etsi.org/tb.aspx?tbid=860&SubTB=860

IOT-TESTWARE - BIG PICTURE

SUMMARY

✓ Advanced testing technology:

✓ Open source IoT-Testware (code):

✓ External (open source) SW

✓ **Standardized** IoT test purposes:

CONTACTS

Thank you for your attention!

Ina.Schieferdecker@fokus.fraunhofer.de Axel.Rennoch@fokus.fraunhofer.de

https://www.fokus.fraunhofer.de/en/sqc

